
Virtual Memory



Background
 Virtual memory allows the execution of processes that are not completely in main 

memory

◦ Logical address space can be much larger than physical memory – no need to worry about available 
physical memory

◦ More programs could run at the same time

◦ Programs would run faster (less need for swapping)

 Certain parts of a program are rarely needed, even the parts that are often needed are 
not all needed at the same time

 Virtual memory allows files and memory to be shared by two or more processes

◦ System libraries, shared memory communication, fork() – process creation

Sparse address spaces



Demand Paging (1)

 Load page into main 

memory only when they 

are needed

◦ Similar to a paging system 

with swapping

 Lazy swapper (pager in 

fact!)

◦ Guess which pages to 

load

◦ Cause a page-fault trap 

when accessing page that 

is not memory resident



Demand Paging (2)

 Page fault handling

 Pure demand paging

 Locality of reference

◦ Multiple page faults caused by 
a single instruction are 
unlikely

 Hardware requirements

◦ Page table with invalid bits

◦ Secondary memory – swap 
space

◦ Ability to restart a process at 
exactly the same place

 This can be tricky! – it is not 
easy to introduce demand 
paging in a system



Demand Paging (3)

 Demand paging seriously affects the performance of a computer

 Page Fault Rate 0  p  1.0

◦ If p = 0 no page faults 

◦ If p = 1, every reference is a fault

◦ Effective Access Time (EAT) = (1 – p) x memory access + p (page fault 
overhead + swap page out + swap page in + restart overhead )

◦ Memory access time = 200 nanoseconds

◦ Average page-fault service time = 8 milliseconds

◦ EAT = (1 – p) x 200 + p (8 milliseconds) = (1 – p)  x 200 + p x 
8,000,000 = 200 + p x 7,999,800

◦ If one access out of 1,000 causes a page fault, then EAT = 8.2 
microseconds 

◦ This is a slowdown by a factor of 40!!

◦ If we want a slowdown < 10%, then we shouldn’t have more than 1 in 
399,990 memory access cause a page fault!!

 Use of the swap space can improve things

◦ For binary files (do not really change) the file system itself can be a 
backing store



Copy-on-Write

 Memory management during fork()

◦ Pool of free pages (stack or heap allocation)

◦ Zero-fill-on-demand

 vfork() – virtual memory fork

◦ Suspend parent process

◦ Changes to memory by child process are 
visible to parent process



Page Replacement (1)

 Over-allocate memory by increasing the degree of 
multiprogramming

 Memory allocation for I/O buffers
◦ Fixed percentage or let them compete



Page Replacement (2)
 Frame allocation algorithm

 Page replacement algorithm – minimise page fault rate

◦ Evaluate using a reference string 

◦ Only consider page no. & ignore multiple consecutive references to the same page

◦ Increasing the number of frames reduces the page fault rate (exponentially)!

 Both crucial for system performance

modify or dirty bit



Page Replacement (3)

 FIFO page replacement

◦ FIFO queue to hold pages in memory

◦ + easy to understand and program

◦ - performance may be poor, depends on how pages are 

used

Belady’s anomaly



Page Replacement (4)

 Optimal page replacement

◦ Lowest page-fault rate, do not suffer from Belady’s anomaly

◦ Replace the page that will not be used for the longest period

 Almost impossible to implement

◦ Used to compare other algorithms



Page Replacement (5)

 Least Recently Used (LRU) page replacement

◦ Use the recent past as an approximation of the future – considered 
good and is often used

◦ Interesting observation applying LRU or the optimal on the reverse 
reference string gives the same number of page faults

◦ May require substantial hardware assistance
 Counters – cost: search of page table + memory access for counter update

 Overflow, context switching

 Stack – referenced pages put on top of the stack (doubly linked list with head 
and tail)

◦ Stack algorithms do not suffer from Belady’s anomaly
 The set of pages in memory for N frames is always a subset of the set of 

pages for N+1 frames  



Page Replacement (6)

 LRU-approximation page replacement
◦ Limited hardware support in the form of a reference bit
 All clear in the beginning, set at every access

 Replace pages with clear reference bits

◦ Additional reference bits algorithm
 Keep a byte for each page

 Update the byte every period by shifting the reference bit from the 
right

 The page with the lowest value in the byte is replaced

◦ Second-chance algorithm – zero history bits
 FIFO that considers reference bit

 Clock algorithm – circular queue (advance pointer and clear bits)
 FIFO when all bits are set

◦ Enhanced second chance algorithm
 Consider both reference and modify bits as ordered pair

 Preference to unmodified pages to reduce I/O



Page Replacement (7)

 Counting-based page replacement
◦ Least-frequently used (LFU) page replacement algorithm
 Shift bits regularly to avoid the initialisation problem

◦ Most frequently used (MFU)

◦ Not good approximations of optimal and not very common

 Page-buffering algorithms
◦ Maintain pool of free frames, first read in the read out

◦ Utilise the page device when idle to write modified pages

◦ Check whether the page is already in the free frame pool
 Combined with FIFO replacement or Second-chance algorithm

 Applications and page replacement
◦ Sometimes its better to let applications management their 

buffering and page replacement – without the OS

◦ Raw disk for raw I/O



Allocation of Frames

 Allocate “all” free frames to user process

◦ Keep some for OS buffering, or for handling page faults or for swapping

 Minimum number of frames

◦ Good for performance reasons

◦ Allocate at as many frames as an instruction may reference
 Limit multiple levels of indirection

 Allocation algorithms

◦ Equal allocation

◦ Proportional allocation – adjust to integer beyond minimum
 Instead of process size according to priority

◦ In either case share is affected by the level of multiprogramming

 Global versus local allocation

◦ Global or local page replacement algorithm – general or within process

◦ In global allocation processes do not control their page fault rate –
performance variation

◦ Global allocation leads to greater throughput and is more common



Thrashing (1)

 A process is thrashing if it spends 
more time paging than executing
◦ Frame allocation below the 

minimum required

 Thrashing is a severe 
performance problem

 Local replacement algorithm or 
priority replacement algorithm 
can limit the effects of thrashing 
– performance may still suffer

 Locality model of process 
execution
◦ Function calls define a new 

locality

◦ Caching only works because of 
locality!!

 If fewer frames than the current 
locality are allocation to a 
process, then the process will 
thrash!!!



Thrashing (2)
 Working set model

◦   working-set window  a fixed number of page references, e.g. 10,000 
instructions

◦ WSSi (working set of Process Pi) = total number of pages referenced in the 
most recent  (varies in time)
 if  too small will not encompass entire locality

 if  too large will encompass several localities

 if  =   will encompass entire program

◦ D = WSSi  total demand frames 
 if D > m Thrashing

◦ Policy if D > m, then suspend one of the processes
 Prevent thrashing while maintaining the level of multiprogramming as high as 

possible

◦ Approximation with fixed-interval timer interrupt and a reference bit
 More bits and more frequent interrupts – more accurate history

 Accuracy versus cost!

 Page-fault frequency



Allocating Kernel Memory (1)

 Kernel allocation from a different free-memory pool
◦ Conservative use of memory,  not subject to the paging 

system

◦ Physically contiguous allocation for devices that interact 
directly with memory

 Buddy system – power of 2 allocator (coalescing)
◦ Internal fragmentation



Allocating Kernel Memory (2)

 Slab allocation

◦ Slab = one or more 
physically contiguous pages

◦ Cache consists of one or 
more slabs

 Separate cache for each 
unique kernel data structure

 Populated with objects

 Free versus used objects

 Slab state: Full, Empty or 
Partial

◦ No fragmentation

◦ Quick serving of memory 
requests



For contemplation (1)

 Consider a demand-paging system with the following time-
measured utilizations:

CPU utilization 20%

Paging disk 97.7%

Other I/O devices 5%

Which (if any) of the following will (probably) improve CPU 
utilization? Explain your answer.

◦ Install a faster CPU.

◦ Install a bigger paging disk.

◦ Increase the degree of multiprogramming.

◦ Decrease the degree of multiprogramming.

◦ Install more main memory.

◦ Install a faster hard disk or multiple controllers with multiple hard disks.

◦ Increase the page size.



For contemplation (2)

 What is the cause of thrashing? How does the system detect 
thrashing? Once it detects thrashing, what can the system do to 
eliminate this problem?

 Assume we have a demand-paged memory. The page table is held in 
registers. It takes 8 milliseconds to service a page fault if an empty 
page is available or the replaced page is not modified, and 20 
milliseconds if the replaced page is modified. Memory access time is 
100 nanoseconds. Assume that the page to be replaced is modified 
70 percent of the time. What is the maximum acceptable page-fault 
rate for an effective access time of no more than 200 nanoseconds?

 Assume that you are monitoring the rate at which the pointer in 
the clock algorithm (which indicates the candidate page for 
replacement) moves. What can you say about the system if you 
notice the following behaviour:

◦ pointer is moving fast

◦ pointer is moving slow



For contemplation (3)

 In a page replacement algorithm what is Belady’s anomaly? Consider 
Least-Recently-Used (LRU) replacement, First-In-First-Out (FIFO) 
replacement, Optimal replacement, and Second-chance replacement: 
which of these algorithms suffer from Belady’s anomaly and which do 
not? In each algorithm that suffers from the anomaly demonstrate the 
problem with an example. 

 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement 
algorithms, assuming four or six frames? Note that all frames are 
initially empty.

◦ Least Recently Used (LRU) replacement

◦ First In First Out (FIFO) replacement

◦ Optimal replacement

Your answer should clearly demonstrate the various steps of the 
calculation, not just the final number of page faults.



For contemplation (4)
 What is the copy-on-write feature, and under what circumstances is it 

beneficial? What hardware support is required to implement this feature?

 The slab allocation algorithm uses a separate cache for each different 
object type. Assuming there is one cache per object type, explain why this 
scheme doesn’t scale well with multiple CPUs. What can be done to 
address this scalability issue?

 Assume there is a 1,024KB segment where memory is allocated using the 
buddy system. Using Figure 9.26 as a guide, draw a tree illustrating how the 
following memory requests are allocated:

◦ Request 240 bytes

◦ Request 120 bytes

◦ Request 60 bytes

◦ Request 130 bytes

 Next modify the tree for the following releases of memory. Perform 
coalescing whenever possible:

◦ Release 240 bytes

◦ Release 60 bytes

◦ Release 120 bytes


